Predicting virus-host association by Kernelized logistic matrix factorization and similarity network fusion

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting drug-target interactions by dual-network integrated logistic matrix factorization

In this work, we propose a dual-network integrated logistic matrix factorization (DNILMF) algorithm to predict potential drug-target interactions (DTI). The prediction procedure consists of four steps: (1) inferring new drug/target profiles and constructing profile kernel matrix; (2) diffusing drug profile kernel matrix with drug structure kernel matrix; (3) diffusing target profile kernel matr...

متن کامل

Kernelized Matrix Factorization for Collaborative Filtering

Matrix factorization (MF) methods have shown great promise in collaborative filtering (CF). Conventional MF methods usually assume that the correlated data is distributed on a linear hyperplane, which is not always the case. Kernel methods are used widely in SVMs to classify linearly non-separable data, as well as in PCA to discover the non-linear embeddings of data. In this paper, we present a...

متن کامل

Kernelized Probabilistic Matrix Factorization: Exploiting Graphs and Side Information

We propose a new matrix completion algorithm— Kernelized Probabilistic Matrix Factorization (KPMF), which effectively incorporates external side information into the matrix factorization process. Unlike Probabilistic Matrix Factorization (PMF) [14], which assumes an independent latent vector for each row (and each column) with Gaussian priors, KMPF works with latent vectors spanning all rows (a...

متن کامل

Logistic Matrix Factorization for Implicit Feedback Data

Collaborative filtering with implicit feedback data involves recommender system techniques for analyzing relationships betweens users and items using implicit signals such as click through data or music streaming play counts to provide users with personalized recommendations. This is in contrast to collaborative filtering with explicit feedback data which aims to model these relationships using...

متن کامل

Integrative and Personalized QSAR Analysis in Cancer by Kernelized Bayesian Matrix Factorization

With data from recent large-scale drug sensitivity measurement campaigns, it is now possible to build and test models predicting responses for more than one hundred anticancer drugs against several hundreds of human cancer cell lines. Traditional quantitative structure-activity relationship (QSAR) approaches focus on small molecules in searching for their structural properties predictive of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: BMC Bioinformatics

سال: 2019

ISSN: 1471-2105

DOI: 10.1186/s12859-019-3082-0